Simplifying credit scoring rules using LVQ + PSO

نویسندگان

  • Laura Lanzarini
  • Augusto Villa Monte
  • Aurelio Fernández Bariviera
  • Patricia Jimbo Santana
چکیده

Purpose – One of the key elements in the banking industry relies on the appropriate selection of customers. To manage credit risk, banks dedicate special efforts to classify customers according to their risk. The usual decision-making process consists of gathering personal and financial information about the borrower. Processing this information can be time-consuming, and presents some difficulties because of the heterogeneous structure of data. Design/methodology/approach – This paper presents an alternative method that is able to generate rules that work not only on numerical attributes but also on nominal ones. The key feature of this method, called learning vector quantization and particle swarm optimization (LVQ PSO), is the finding of a reduced set of classifying rules. This is possible because of the combination of a competitive neural network with an optimization technique. Findings – These rules constitute a predictive model for credit risk approval. The reduced quantity of rules makes this method useful for credit officers aiming to make decisions about granting a credit. It also could act as an orientation for borrower’s self evaluation about her/his creditworthiness. Research limitations/implications – In spite of the fact that conducted tests showed no evidence of dependence between results and the initial size of the LVQ network, it is considered desirable to repeat the measurements using an LVQ network of minimum size and a version of variable population PSO to adequately explore the solution space in the future. Practical implications – In the past decades, there has been an increase in consumer credit. Retail banking is a growing industry. Not only has there been a boom in credit card memberships, specially in emerging economies, but also an increase in small consumption credits. For example, it is very common in emerging economies that families buy home appliances on installments. In those countries, the association of a home appliance shop with a financial institution is usual, to provide customers with quick-decision credit line facilities. The existence of such a financial instrument aids to boost sales. This association generates conflict of interests. On one hand, the home appliance shop wants to sell products to all customers. Therefore, it is in its best interest to promote a generous credit policy. On the other hand, the financial institution wants to maximize the revenue from credits, leading to a strict surveillance of loan losses. Having a fair and transparent credit-granting policy favors a good business relationship between home appliances shops and financial institutions. One way of developing such a policy is to construct objective rules to decide to grant or deny a credit application. Social implications – Better credit decision rules generate enhanced risk sharing. In addition, it improves transparency in credit acceptance decisions, giving less room to arbitrary decisions. Originality/value – This study develops a new method that combines a competitive neural network and an optimization technique. It was applied to a real database of a financial institution in a developing country.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Combining Forecast Model Based on PSO for Personal Credit Scoring

Aiming at the insufficiency of credit scoring models, this paper puts out a new approach by using combining forecast model for personal credit scoring. Based on linear regression and logistic regression models, this paper constructed a combining model and used particle swarm optimization (PSO) to search each single model’s weight. In order to control the type II error rate,the particle’s fitnes...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

اعتبارسنجی اقتصادی از منظر حقوق عمومی

Government seeks to manage every aspects of society including financial affairs, in order to exercise its sovereignty. This management requires keeping and using financial information of citizens which is used in process of credit scoring. On the other hand, financial information of people is known as a part of their privacy and cannot been breached without legal permission, so that legal princ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetes

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2017